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Enric Ventura, Universitat Politècnica de Catalunya (algebra, group theory)

Associate Editors
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Albert Ruiz, Universitat Autònoma de Barcelona (topology)
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Resum (CAT)

Estudiem l’equació de les ones per a una corda amb rigidesa. Resolem l’equació i

n’enunciem un teorema d’unicitat amb condicions de contorn adequades. Per a

una corda punxada calculem l’espectre, que és lleugerament inharmònic. Per tant,

l’habitual escala de 12 divisions iguals de l’octava justa no és la millor elecció per

afinar instruments com ara el piano. Basant-nos en la teoria de la dissonància,

proporcionem una manera d’afinar el piano a fi de millorar-ne la consonància. Una

bona solució s’obté afinant una nota i la seva quinta tot minimitzant els seus batecs.

Abstract (ENG)
We study the wave equation for a string with sti↵ness. We solve the equation and

provide a uniqueness theorem with suitable boundary conditions. For a pinned string

we compute the spectrum, which is slightly inharmonic. Therefore, the widespread

scale of 12 equal divisions of the just octave is not the best choice to tune instru-

ments like the piano. Basing on the theory of dissonance, we provide a way to tune

the piano in order to improve its consonance. A good solution is obtained by tuning

a note and its fifth by minimizing their beats.
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Sti↵ strings and piano tuning

1. Introduction

The problem of finding appropriate scales for playing music has worried musical theorists and instrument
makers for centuries. There is a close relationship between the theory of musical scales and the frequency
spectra of musical instruments; indeed, the harmonic spectrum of most instruments has lead to the present
day tempered scale, with 12 equal divisions of the octave (12-edo). However, piano strings have some
degree of sti↵ness, which implies that their spectrum is slightly inharmonic, and this explains why the tuning
of the piano is actually “stretched”, with octaves slightly larger than should; see [6, p. 389]. The purpose
of this paper is to perform an accurate mathematical study of the wave equation of a string with sti↵ness,
and what does it imply to the choice of a scale. Throughout the paper we will assume an elementary
knowledge of acoustics (physical and perceptive properties of the sound) and of music theory (intervals and
the tempered scale); for the benefit of the reader, we have collected some of these notions in an appendix.

The classical wave equation, utt = c
2
uxx , models a perfectly elastic string. If we want to take the

sti↵ness into account, we need to modify the equation. The simplest way to do this consists in adding a
term coming from the Euler–Bernoulli beam equation, which is used to model the deflection of rigid bars.
The result is a fourth order PDE of the form utt = c

2
uxx � M

2
uxxxx that has been seldom studied in

the acoustics literature [6, 10], and often sketchily. This is why we have found it convenient to perform
a more detailed and self-contained study with rather elementary techniques; see Section 2. We compute
the explicit form of the solutions, which turns out to be the same as in the non-sti↵ case, except by the
fact that the frequency spectrum is no longer harmonic, but of the form fn = n f�

p
1 + Bn2, with n � 1,

where B is a constant depending on the physical parameters of the string. We also show the existence and
uniqueness for the PDE with appropriate boundary conditions.

For piano strings the value of the inharmonicity parameter B is about 10�3. This means that its spectral
frequencies slightly deviate from the harmonic ones (it has a “stretched harmonic spectrum”). Though
small, this deviation is of great importance for the consonance of the intervals between notes, because the
human ear is very sensitive to frequency di↵erences.

The auditory perception qualifies some musical sounds as consonant (“pleasant”), whereas others are
dissonant. As it is explained in more detail in Section 3 and in the Appendix, there is a close relationship
between dissonance, spectrum and scale: the choice of the notes used to play music aims to achieve the
best possible consonance, and this consonance depends directly on the spectrum of the sounds. Therefore,
the fact that sti↵ strings have a slightly inharmonic spectrum leads to reconsider the exact tuning of the
notes we play with them. A tool to perform a systematic study of this problem is the dissonance curve of a
spectrum. Basing on experimental results by Plomp and Levelt [11], one can define a function to measure
the dissonance of two notes as a function of their frequency ratio, and draw a dissonance curve, which
depends strongly on the spectrum. The local minima of this curve indicate possible good choices for the
notes of the scale as far as the consonance of its intervals is concerned, [15].

We apply this approach to the string with sti↵ness. Its spectrum is given by fn = n f�
p
1 + Bn2 (see

Section 2) and therefore the ratio between the first and the second partials is not the just octave 2:1, but
a “stretched octave” 2

p
1 + 4B/

p
1 + B . So, we wonder if there exist scales for this spectrum that could

possibly be more “consonant” than the usual 12-edo scale. Aiming to preserve the freedom to modulate
to any tonality, we look for a scale with equal steps, or, equivalently, equal divisions of a certain interval,
as for instance a stretched octave. In Section 4 we use the dissonance curve of the stretched spectrum to
study this problem in two di↵erent ways. One is based in the coincidence of some partials. The other one
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minimizes a weighted mean of the dissonance. As a result, we obtain that a good solution is to tune the
fifth by making the second partial of the higher note to coincide with the third partial of the fundamental
note.

The paper is organised as follows. In Section 2 we study the modelling of a string with sti↵ness: we give
an explicit solution of the equation when the boundary conditions are those of a pinned string, we present
a rigorous derivation of its spectrum, and we state a uniqueness theorem. In Section 3 we recall some facts
about the theory of dissonance and how to draw dissonance curves, and we obtain the dissonance curve
of the string with sti↵ness. In Section 4 we study several proposals to tune the piano, either based in the
coincidence of partials or the minimization of the mean dissonance. Section 5 is devoted to conclusions.
Finally, an appendix gathers some basic concepts of acoustics and music theory.

2. The wave equation for the string with sti↵ness

It is well known [14, 16] that the motion of a vibrating string (for instance, a violin string) can be represented
by the solutions of the problem

8
>>>>><

>>>>>:

@2u

@t2
= c

2@
2
u

@x2
x 2 (0, L), t > 0

u(0, t) = u(L, t) = 0 t � 0

u(x , 0) = �(x) x 2 [0, L]

@tu(x , 0) =  (x) x 2 [0, L],

where u(x , t) represents the transversal displacement of the string of length L (represented by the interval
[0, L]) from its equilibrium position, and �(x) and  (x) are, respectively, the initial shape and velocity of
the string. The boundary conditions u(0, t) = u(L, t) = 0 for t � 0 mean that the string has fixed ends
and c

2 = ⌧/⇢, with ⌧ the tension of the string and ⇢ its linear density. The value c is the velocity of the
travelling waves along the string.

The solution of this equation can be computed using the method of separation of variables, obtaining

u(x , t) =
1X

n=1

[an cos (2⇡fnt) + bn sin (2⇡fnt)] sin
⇣
n⇡

L
x

⌘
, fn =

nc

2L
,

where the coe�cients an and bn are obtained from the Fourier coe�cients of the initial conditions �,  .
For the convergence and smoothness of this series some regularity conditions are required on �,  ; see, for
instance, [14].

The model of the wave equation is a good approximation for instruments like the guitar, whose strings
are almost perfectly flexible. However, when we want to model the motion of the piano strings, which have
greater sti↵ness, the classical wave equation is not good enough. For this reason, a term describing the
resistance against bending is added to it (see [6, p. 64]), obtaining the following equation:

@2u

@t2
= c

2@
2
u

@x2
� ESK

2

⇢

@4u

@x4
, (1)

where S is the cross-sectional area of the string, E is Young’s modulus of its material, ⇢ is its linear density
and K is the radius of gyration, which is K = R/2 for a cylindrical shape of radius R ; see [6, p. 58].
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The added term is the same that appears in the beam equation (also called Euler–Bernoulli equation),
modelling the motion of a vibrating beam under the hypotheses of no shear stress nor rotational inertia;
a deduction of this equation can be found, for instance, in [6, p. 58], or at the end of [17, Chapter 2].
One can view (1) as the generalization of a PDE for a vibrating material: the first term is due to the
elasticity of the material (its capacity to return to the initial position after a deformation) and the second
one, due to the resistance against bending. If the first term is zero, the material is not elastic and we get
the beam equation. On the contrary, if the second term is zero, the material is not rigid and we get the
wave equation.

The string with sti↵ness based on the Euler–Bernouilli model is the most widely used model. Never-
theless, there exist other equations that can model the vibration of rigid materials (and in particular piano
strings). Prominent among them is the Timoshenko beam model, which takes into account shear stress and
rotational inertia [7]. The description of the motion of piano strings using this model has been thoroughly
discussed recently in the thesis [3]. It is shown there that the frequencies of the string based upon the
Timoshenko beam model behave as the ones based on the Euler–Bernouilli model for the lower partials;
the Timoshenko model provides a better description for higher partials, a region where their contribution
to dissonance is negligible. Therefore, the Euler–Bernouilli model is enough for our purposes.

2.1 Solving the equation

Equation (1) was studied in [5], where the author guesses the form of some solutions with separate variables.
Besides that article, only a few references in the acoustics literature deal with the string with sti↵ness, and
they merely give approximate solutions of the spectrum, without further justification. A recent study of this
equation is in [3], where the exact formula for the frequency of the partials is found using Fourier transform,
though the equation is not actually solved. So we have found it convenient to perform a detailed study:
by following the standard method of separation of variables, we give a solution of the initial value problem
with appropriate boundary conditions, obtaining also the formula for the frequencies. Uniqueness of the
solution is studied in the following section.

We start by looking for a solution to equation (1) of the form u(x , t) = X (x)T (t). We have

XT
00 = c

2
X

00
T � ESK

2

⇢
X

(4)
T =) T

00

T
= c

2X
00

X
� ESK

2

⇢

X
(4)

X
. (2)

As the left-hand side of the equation depends only on t and the right-hand side, only on x , (2) has to be
a non positive constant, called �!2 (non positive because we are looking for periodic solutions in time):

T
00

T
= c

2X
00

X
� ESK

2

⇢

X
(4)

X
= �!2.

If we look at the time equation, we have an ODE which is easy to solve: T!(t) = A cos!t + B sin!t.

We look now for the solutions of the ODE for X :

ESK
2

⇢
X

(4) � c
2
X

00 � !2
X = 0 . (3)

We divide the equation by ESK
2/⇢ and define a := c

2⇢/ESK 2 and b := ⇢!2/ESK 2. After that, (3)
becomes X (4) � aX

00 � bX = 0 , whose solutions are of the form

C1 cosh k1x + C2 sinh k1x + C3 cos k2x + C4 sin k2x ,
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Xavier Gràcia, Tomás Sanz-Perela

with k1 =
q
(a+

p
a2 + 4b)/2 and k2 =

q
(�a+

p
a2 + 4b)/2. We introduce again two convenient

constants:

B := ⇡2
ESK

2

⌧L2
and f� :=

c

2L
.

In this way, using the definition of a and b, we obtain the following relations between k1, k2 and !:

k
2
1 =

⇡2

2BL2

2

4
s

1 +
!2

B

f 2� ⇡
2
+ 1

3

5 and k
2
2 =

⇡2

2BL2

2

4
s

1 +
!2

B

f 2� ⇡
2
� 1

3

5 . (4)

We want to find the possible values of k1 and k2, that will determine the possible values of !. In order
to do it, we will impose the boundary conditions, but now, as the equation is of 4-th order, we need 4
boundary conditions, two more apart from the Dirichlet boundary conditions on both ends of the string.
We will consider two cases:

• X
0 = 0 at the ends; this case appears when the string is clamped at the ends.

• X
00 = 0 at the ends; this happens when the string is pinned at the ends, since there is no moment.

The first case, X = X
0 = 0 at the ends of the string, leads to an equation that can be solved numerically,

but it is not possible to get a closed formula for the spectrum of frequencies; see [5] for more details and
for an approximate formula. The second case, X = X

00 = 0 at the ends of the string, is easier to solve and
will lead us to a formula for the frequencies of the partials. In the case of the piano, this second option
seems to be closer to reality, because the strings are supported on a bridge. From now on, we will focus in
this case.

Pinned boundary conditions. We are going to solve the problem with the condition X = X
00 = 0 at

the ends of the string. Consider a general solution of (3), say

X (x) = C1 cosh k1x + C2 sinh k1x + C3 cos k2x + C4 sin k2x . (5)

We want to find the possible values of k1 and k2 that make (5) satisfy (non-trivially) the boundary
conditions. Let us impose these boundary conditions at the string ends, x = 0, L.

For x = 0, we obtain:

X (0) = C1 + C3 = 0 and X
00(0) = C1k

2
1 � C3k

2
2 = 0 .

From the first equation we get �C3 = C1 and, replacing it in the second one, we arrive to the equation
C1(k21 + k

2
2 ) = 0, which implies C1 = C3 = 0.

Now we impose the boundary conditions at x = L to X (x) = C2 sinh k1x + C4 sin k2x , obtaining:

X (L) = C2 sinh k1L+ C4 sin k2L = 0 and X
00(L) = C2k

2
1 sinh k1L� C4k

2
2 sin k2L = 0.

Multiplying the first equation by k
2
2 and adding it to the second one, we get C2(k21 + k

2
2 ) sinh k1L = 0. As

the last two factors are di↵erent from zero, we conclude that C2 = 0.

Finally, we have C4 sin k2L = 0. As we want nontrivial solutions, we need C4 6= 0 and, thus, k2L = n⇡
for n � 1. From this relation and (4) we obtain

⇣
n⇡

L

⌘2
=

⇡2

2BL2

2

4
s

1 +
!2
nB

f 2� ⇡
2
� 1

3

5
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and, isolating !n, we obtain the possible frequencies:

fn =
!n

2⇡
= n f�

p
1 + Bn2 with n = 1, 2, ... (6)

Thus, for each of the !n, the solution of (3) satisfying the boundary conditions is a multiple of

Xn(x) = sin
⇣
n⇡

L
x

⌘
with n = 1, 2, ...

Remarkably, these are the same modes of vibration as in the case without sti↵ness: the di↵erence only
shows up in the frequencies of vibration.

To conclude, we can write the general solution of the PDE (1), with boundary conditions u = 0 and
uxx = 0 at the ends of the string, as:

u(x , t) =
1X

n=1

h
an cos (2⇡fnt) + bn sin (2⇡fnt)

i
sin

⇣
n⇡

L
x

⌘
, fn = n f�

p
1 + Bn2,

where an, bn are obtained from initial conditions in the same way as in the ideal case.

As we can see, the spectrum is no longer harmonic, but it is ‘stretched’ from the harmonic one due to
the factor

p
1 + Bn2. For a cylindrical string of radius R the value of B is B = ⇡3ER4/4⌧L2; its typical

values for a piano string are about 10�3.

Notice that the constant f� = c/2L would be the fundamental frequency of the string if it did not have
sti↵nes (B = 0); in this case, we would recover the frequency spectrum of the ideal string. When B > 0,
the fundamental frequency is f1 = f�

p
1 + B , higher than f�.

2.2 Uniqueness of solutions

We prove now a theorem of uniqueness of solutions for the wave equation with sti↵ness. This can be
seen a particular case of the results of semigroup theory for evolution problems with monotone operators
(see [2, 4]), but in this case we provide an elementary proof, similar to the uniqueness theorem for the wave
equation, which can be found for instance in [14]. We will use the notation @n⇠ := @n/@⇠n when necessary.

Lemma 2.1. Let u(x , t) 2 C4([0, L]⇥ [0,1)) satisfying

@2u

@t2
= c

2@
2
u

@x2
�M

2@
4
u

@x4
, (7)

for x 2 (0, L) and t > 0. In any of the two following cases

(
u(0, t) = u(L, t) = 0 t � 0

@xu(0, t) = @xu(L, t) = 0 t � 0
or

(
u(0, t) = u(L, t) = 0 t � 0

@2xu(0, t) = @2xu(L, t) = 0 t � 0
,

the quantity

E(u) = 1

2

Z L

0

✓
(@tu)

2 + c
2(@xu)

2 +M
2(@2xu)

2

◆
dx

is constant in time.
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Proof. We just need to show that the derivative with respect to t of E(u) is zero:

d

dt
(E(u)) =

Z L

0

✓
@tu @

2
t u + c

2@xu @t@xu +M
2@2xu @t@

2
xu

◆
dx (using (7))

=

Z L

0

✓
@tu(c

2@2xu �M
2@4xu) + c

2@xu @t@xu +M
2@2xu @t@

2
xu

◆
dx

= c
2
Z L

0

✓
@tu @

2
xu + @xu @x@tu

◆
dx +M

2
Z L

0

✓
@2xu @

2
x@tu � @tu @

4
xu

◆
dx =: c2Ic +M

2
IS .

Now,

Ic =

Z L

0

✓
@tu @

2
xu + @xu @x@tu

◆
dx

parts
=

Z L

0

✓
@tu @

2
xu � @2xu @tu

◆
dx +

⇥
@xu @tu

⇤L
0
=

⇥
@xu @tu

⇤L
0
,

which is zero due to the Dirichlet boundary condition (u = 0 at 0, L for all t � 0 implies @tu = 0 for all
t � 0). Similarly, we have

IS =

Z L

0

✓
@2xu @

2
x@tu � @tu @

4
xu

◆
dx

parts
=

Z L

0

✓
� @3xu @x@tu � @tu @

4
xu

◆
dx +

⇥
@2xu @x@tu

⇤L
0

parts
=

Z L

0

✓
@4xu @tu � @tu @

4
xu

◆
dx +

⇥
@2xu @x@tu

⇤L
0
�

⇥
@3xu @tu

⇤L
0
=

⇥
@2xu @x@tu

⇤L
0
�

⇥
@3xu @tu

⇤L
0
,

which is again zero due to the boundary conditions.

Therefore, we get d(E(u))/dt = 0.

Thanks to this result, we can now prove the next theorem. Indeed, in its formulation we include a
source term and nonhomogeneous boundary conditions, so it is slightly more general than the problem of
the sti↵ string we are studying.

Theorem 2.2. There exists at most one solution u 2 C4([0, L]⇥ [0,1)) of the problem

8
>>>>>>><

>>>>>>>:

@2u

@t2
= c

2@
2
u

@x2
�M

2@
4
u

@x4
+ f (x , t) x 2 (0, L), t > 0

u(0, t) = u(L, t) = �(t) t � 0

@2xu(0, t) = @2xu(L, t) = µ(t) t � 0

u(x , 0) = �(x) x 2 [0, L]

@tu(x , 0) =  (x) x 2 [0, L] .

(8)

This is also true if, instead of conditions on @2xu, we put conditions on @xu: @xu(0, t) = @xu(L, t) = ⌘(t).

Proof. Let u1 and u2 be two solutions of the problem (8). Since the PDE is linear, u := u1� u2 solves the
homogeneous problem 8

>>>>>>><

>>>>>>>:

@2u

@t2
= c

2@
2
u

@x2
�M

2@
4
u

@x4
x 2 (0, L), t > 0

u(0, t) = u(L, t) = 0 t � 0

@2xu(0, t) = @2xu(L, t) = 0 t � 0

u(x , 0) = 0 x 2 [0, L]

@tu(x , 0) = 0 x 2 [0, L] .

(9)
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By lemma 2.1, the non negative quantity E(u) is constant in t. But at time t = 0,

E(u)
��
t=0

=
1

2

Z L

0

✓
(@tu)

2 + c
2(@xu)

2 +M
2(@2xu)

2

◆����
t=0

dx = 0

so, E(u) ⌘ 0 for all time. Therefore,

(@tu)
2 + c

2(@xu)
2 +M

2(@2xu)
2 = 0 =) @tu = 0 , @xu = 0 (and @2xu = 0) .

Since all partial derivatives of first order of u are zero, u is a constant function. Finally, at t = 0, u = 0,
so u ⌘ 0 for all time t � 0. Therefore, u1 = u2.

The proof for boundary conditions on @xu is completely analogous.

3. Scales, spectrum and dissonance curves

As we mentioned in the introduction, if a spectrum is given, by analysing its dissonance curve, one can try
to find appropriate scales for it. In this section we provide some details for this analysis, following [15].

In 1965, Plomp–Levelt [11] performed an experiment aiming to measure the dissonance of two pure
tones in terms of their distance; this dissonance was evaluated by many subjects, and as a result they
concluded that the maximal degree of dissonance is attained at roughly 1/4 of the critical bandwidth, a
concept from psychoacoustics that had been introduced and studied some years before (see also [12]).
Except for low frequencies, the width of a critical band corresponds to an interval around a minor third.

Plomp and Levelt claimed that this could be extrapolated to complex tones, so that the dissonance of
a sound could be computed as the sum of the dissonances of all the pairs of its partials. More specifically,
by taking a harmonic spectrum with 6 partials (and equal loudnesses), they obtained a dissonance curve
similar to Helmholtz’s, showing points of local minimal dissonance for frequency ratios ↵ equal to 1:1, 2:1,
3:2, 5:3, 4:3, 6:5, 5:4, and a maximum of dissonance near the semitone interval. Figure 1 shows some of
Plomp and Levelt’s results.

More recently, Sethares [15] did a systematic study of the dissonance curve of several spectra, and
showed the close relationship between spectrum and scales; his work includes the synthesis of artificial
spectra adapted to play music in exotic scales, while still retaining some degree of consonance.

We want to apply this procedure to the spectrum of the string with sti↵ness. For this, we need
a specific expression of a function modelling the dissonance. Following [15], given two pure tones of
frequencies f1  f2 (expressed in Hz) and loudnesses `1, `2 then the dissonance (in an arbitrary scale)
can be expressed as d(f1, f2, `1, `2) = min(`1, `2)

�
e
�b1 s (f2�f1) � e

�b2 s (f2�f1)
�
, where s = x

⇤/(s1f1 + s2),
and the parameters are b1 = 3.5, b2 = 5.7, x⇤ = 0.24, s1 = 0.021 and s2 = 19. The graph of this
function reproduces the shape obtained by Plomp and Levelt, Figure 1 (left); dissonance is measured in an
arbitrary scale, therefore usually we will normalize its expression so that it takes values between 0 and 1.
The preceding expressions and numbers give just a possible model for the dissonance of two tones; other
models (see for instance [1]) can be used and, qualitatively, the results are the same.

Then, if F is a spectrum with frequencies f1 < · · · < fn and loudnesses `1, ... , `n, the dissonance of F
is defined as the sum of the dissonances of all the pairs of partials, dF =

P
i<j d(fi , fj , `i , `j). Finally, the

dissonance function of a given spectrum F is the function that yields the dissonance of two tones as a
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Figure 1: Graphics of Plomp and Levelt’s results [11]. Left: Dissonance of two pure tones as a function of
their distance measured in critical bandwidths; extrapolated from experimental data. Right: Theoretical
model of the dissonance of two harmonic tones as a function of their frequency ratio (the vertical lines
mark the steps of the 12-edo scale).

function of the ratio ↵ of their fundamental frequencies: DF (↵) = dF[↵F , where we denote by ↵F the
spectrum F with its frequencies scaled by the factor ↵, and by F [ ↵F the union of both spectra.

The graph of the function DF is the dissonance curve of the given spectrum, and its analysis can help us
to find an appropriate scale (and conversely: given an arbitrary scale, is there an appropriate spectrum for
it?). Nevertheless, this is not so immediate, and these results do not tell us how to construct a scale. For
instance, consider the harmonic spectrum and its dissonance curve as in Figure 1 (right). From a reference
note —a C, say— one can form a just scale by adding other notes coinciding with the local minima of
the dissonance curve: G (3:2), F (4:3), A (5:3), E (5:4), etc. Notice, however, that from each of these
new notes we should consider again the dissonance curve in relation with the notes already chosen. This
analysis is simpler when we use an equal-step scale, like 12-edo, because the relative positions of the notes
are the same. In the same figure we see the abscissas of the 12-edo scale; it is clear that local minima of
dissonance are attained near points that are at a distance of 3, 4, 5, 7, 9 and 12 steps from any given note.

Now let us apply this procedure to the piano. As we have already noted in the preceding sections,
its strings have a certain degree of sti↵ness, and, according to (6), their spectrum is given by fn =
n f�

p
1 + Bn2, for n � 1. We can draw its dissonance curve and we observe that, for small B > 0, the

local minima of dissonance are slightly shifted to the right with respect to those of the harmonic spectrum;
see Figure 2.

Notice, in particular, that the octave and the fifth (the most important intervals of Western music)
of the usual 12-edo scale are noticiably flatter than the “optimal” octave and fifth deduced from the
stretched spectrum, i.e., the corresponding intervals where this spectrum has a local minimum of dissonance.
Therefore the 12-edo scale seems not to be the best choice to play music as far as dissonance is concerned.
This fact makes us wonder which is the “best” tuning for the piano, i.e., a tuning that fits better with the
minima of the dissonance curve. We give an answer to this question in the next section.
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Figure 2: Comparison betwwen the dissonance curves of the harmonic spectrum (dashed) and the stretched
spectrum (solid) of a string with sti↵ness. The grey vertical lines show the steps of the usual 12-edo scale;
the black ones show the just fifth and octave. (We have used B = 0.0013 for the sake of clarity.)

4. Proposals for the piano tuning

We have just seen that, due to the sti↵ness of the strings, the spectrum of the piano is slightly stretched,
and therefore the minima of the dissonance curve do not coincide with the notes of the usual 12-edo scale,
not to say other tunings like just intonation. Now our goal is to find a scale that preserves, as much as
possible, the consonance of the main intervals of music. We will restrict our search to scales with equal
steps, because we want to preserve the freedom to modulate to arbitrary tonalities —this is especially
important for piano music. So, if r is the frequency ratio of the step of the scale, and f is the frequency
of its fundamental note, the frequencies of all the notes are f , r f , r2f , r3f , ...

We will follow two procedures. The first one is based on the coincidence of a couple of partials: then
their beats disappear and we avoid their dissonance, as it is explained in the Appendix. We will explore
three possible choices for the step and see what do they imply for the dissonance curve. The second one
is to define an average dissonance as a function of the step and try to minimize it.

It should be remarked that in this study we assume that the sti↵ness parameter B is the same for all
the strings. This is approximately true in the middle third of the keyboard [5]. For the lower third of the
keyboard, the sti↵ness parameter of the strings is very low, indeed they are manufactured in a special way,
so that a di↵erent analysis would be required; besides this, the overall dissonance in this region is high.
For the upper third of the keyboard, the upper partials are weak (and even become rapidly inaudible), so
that their e↵ect on the dissonance can be neglected.

In all calculations we will use the obtained formula for the partials, fn = n f�
p
1+Bn2 (n � 1), as well

as the expresions of the dissonance functions defined in Section 3. We will consider B 2 [0.0004, 0.002],
see [5], but we will also see that we recover the results for the harmonic case when B ! 0.

4.1 Coincidence of partials

Here, our strategy to construct a scale close to 12-edo is as follows:

(i) We consider a fixed note of fundamental frequency f1. Suppose we have already fixed a second note,
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f1 = f�
p
1 + B f2 = 2f�

p
1 + 4B f3 = 3f�

p
1 + 9B f4 = 4f�

p
1 + 16B

12edo f1 = 2f1 f2 = 4f�
p
1 + 4B

A2,1
f1 = f2 f2 = 4f�(1 + 4B)/

p
1 + B

A3,1
f1 = f3

A3,2
f1 f2 = f3

Figure 3: The partials of the stretched spectrum are represented in the upper line; they are compared with
the harmonic ones (black nodes). In the lower lines the partials of four tunings are shown: the usual just
octave (12-edo), the octave of A2,1, the twelfth of A3,1, and the fifth of A3,2.

of fundamental frequency f 1. Then we divide the interval f 1 : f1 in p equal parts, thus obtaining a
step whose frequency ratio is r = (f 1/f1)1/p. We will choose the number of parts p that makes the
step r to be the closest possible to the frequency ratio of the 12-edo semitone, 21/12.

(ii) So we have to properly choose the second note f 1. We base this choice upon the spectrum of the
notes, (fi )i�1 and (f i )i�1. In our particular case, we seek the coincidence of some partials. So, we
define the tuning Am,n as the one obtained by letting the m-th partial fm of the first note to coincide
with the n-th partial f n of the second note. Equating fm = f n determines f n and therefore f 1.

(iii) Finally, if r = rm,n is the step of Am,n, the notes of the scale are r
k
f1, for integer values of k .

We have noticed before that the coincidence of some partials does not necessarily imply consonance.
However, this analysis is meaningful because it can be directly applied to actual tuning, since it is easy to
tune an interval by letting beats disappear; moreover, we will see later that one of our proposals will be
especially good in terms of dissonance.

As the octave and the fifth are the most important intervals in music, three natural tunings can be
considered:

(i) A2,1: the second partial f2 of the first note coincides with the first partial f 1 of the second note (we
try to minimize the beats of the octave).

(ii) A3,1: the third partial f3 of the first note coincides with the first partial f 1 of the second note (we
try to minimize the beats of the twelfth).

(iii) A3,2: the third partial f3 of the first note coincides with the second partial f 2 of the second note (we
try to minimize the beats of the fifth).

In Figure 3 we show a schematic description of these tunings. Once we have tuned our interval f 1 : f1,
we divide it in p equal parts: 12 for the octave, 19 for the twelfth, and 7 for the fifth. These steps are the
semitones of the corresponding tuning. Their frequency ratio is given by (f1/f1)1/p; in our cases, they are:

r2,1 = 21/12
✓
1 + 4B

1 + B

◆1/24

, r3,1 = 31/19
✓
1 + 9B

1 + B

◆1/38

, and r3,2 =

✓
3

2

◆1/7✓1 + 9B

1 + 4B

◆1/14

.
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Figure 4: Left: The dissonance curve of the stretched spectrum (B = 0.001) near the just octave; vertical
lines show the octave generated by di↵erent steps r : from left to right, r = 21/12 (12-edo), r = r2,1,
r = r3,1, and r = r3,2. Right: The same near the just fifth.

Now, a given choice of the step r defines a scale, and we can locate its notes in the dissonance curve.
The idea is that, by stretching the gap between the notes (vertical lines in Figure 2), possibly the new
notes will fit better the minima of the dissonance curve of the stretched spectrum (solid line in the figure).

One of our main goals is to tune the octave, the most important interval in music. Therefore, we
analyze in particular how the new octaves generated by these steps (the ratio obtained by r

12, for each of
the chosen values of r) fit the minimum of the dissonance curve near the frequency ratio 2. The same can
be done with the fifth by analyzing the ratios r7 near the ratio 3:2 in the dissonance curve. The results are
shown in Figure 4.

From that figure it appears that the tuning A3,2 fits better than the others the minimum of dissonance
at the octave and also at the fifth. For the octave this may seem paradoxical because A2,1 was set to tune
the octave ad hoc, but actually this tuning only makes the dissonance caused by a single pair of partials
to disappear, whereas other partials may give rise to higher dissonance. This suggests also that our study
should consider all the other intervals, because we are not controlling their dissonance. In the next section
we make a proposal to deal with this.

4.2 Minimization of dissonance

The preceding analysis can be completed by performing a general study of the dissonance of all the intervals
of the scale. We would like to find the semitone r which minimizes (in some sense) the total dissonance
of the scale.

In the most general setting, we could define the mean dissonance of a scale as a weighted sum of the
dissonances of all couples of notes. The weighting is necessary because not all intervals are equally used
in music, and di↵erent intervals have di↵erent musical roles; therefore their consonances are not equally
important.

For an equal step scale it is enough to consider the dissonances of all the notes with respect to a given
one, that is, the dissonances between the fundamental note of the scale (with frequency f1) and the others
(with frequencies rk f1). More specifically, given a semitone r , we define the mean dissonance of the equal
step scale generated by r as a weighted average of the dissonances of all the intervals from the fundamental
note of the scale within the range of an octave, that is:

Dm(r) :=
12X

k=1

wk DF (r
k),
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Figure 5: Left: Plot of Dm(r) for di↵erent values of B 2 [0, 0.002]. For each B the marked point
corresponds to the minimum r

⇤. The vertical line represents the 12-edo semitone. Right: Distance to the
12-edo semitone of the three tunings and the optimal semitone (in cents).

where F is the spectrum of the fundamental note f1, including frequencies and loudnesses, and w = (wk)
is a vector of weights. In the following calculations we have used w = (1, 1, 4, 4, 5, 2, 6, 4, 4, 2, 1, 10) to
give preeminence to the octave, the fifth, etc. Intervals larger than an octave could be considered in the
sum; we omit them because their e↵ect on the dissonance is small and we have to cut the sum at some
point.

If we minimize the function Dm(r), numerically, on the interval r 2 [1.0585, 1.061], near the 12-edo
semitone 21/12, we find di↵erent values for the minimum point r⇤ depending on B . The results are shown
in Figure 5 (left).

We want to compare this optimal semitone with the semitones of the three tuning proposals considered
before. For each B , we compute the distance of these four semitones to the 12-edo semitone; this is shown
in Figure 5 (right). As we can see, the semitone of A3,2 approximates the optimal semitone: (i) better
than the 12-edo semitone if B is higher than 0.00025; (ii) better than the other proposals if B is higher
than 0.0005; and (iii) coincides with the optimal semitone if B is higher than 0.001. Notice also that the
optimal semitone coincides with the 12-edo semitone when B = 0.

The graphics in Figure 5 have been computed with Matlab. We have used a spectrum of 6 partials,
the value f� = 440 Hz, the weighting vector as defined before, and the loudnesses inversely proportional to
the number of the partial. Nevertheless, we have also checked that the results obtained are quite similar if
we use the same loudness for all partials, the same weights for all intervals, or 7 partials instead of 6.

5. Conclusions

We have studied the spectrum of strings with sti↵ness modelled according to the Euler–Bernouilli model.
Although this was already known, we have done a mathematically rigorous derivation of it using elementary
techniques. We have applied this result and the theory of dissonance to study the tuning of the piano with
a scale of equal steps. We have followed two approaches: one is to define a scale based on the coincidence
of some specific partials; the other one is to define an average dissonance of a scale and trying to minimize
it as a function of the step. It appears that a good solution is to tune a note and its fifth by forcing their
3rd and 2nd partials, respectively, to coincide.
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Appendix: sound and music

In this appendix we summarize some basic information about sound and music. This can be found in many
books, as for instance [1, 13].

Sound, pitch, spectrum. Sound is both an oscillation of the air pressure, and also the auditory sensation
it creates. Besides duration, sound has three main perceptive attributes: loudness, pitch and timbre. These
are related to physical attributes: amplitude, frequency and spectrum. However, these relations are by no
means simple.

Let us consider the pitch, a quality that allows sounds to be ordered from lower to higher pitches. A
pure tone of frequency ⌫ and amplitude A is described by a sinusoid A sin(2⇡⌫t), and its pitch can be
identified with the frequency. A musical sound is usually a superposition of pure tones (the partials) of
several frequencies and amplitudes; these constitute the spectrum of the sound. For instance, most wind
and string instruments have harmonic spectrum, i.e., their spectral frequencies are integer multiples of
a fundamental frequency f1, that is, fn = n f1, with n � 1. Such a sound is perceived to have a pitch
identified with frequency f1. However, not every sound can be attributed a pitch; some musical instruments,
for instance most drums, have indefinite pitch.

Intervals, octave, semitone, cents. The di↵erence between two pitches is called interval. The pitch
perception obeys two fundamental rules. One is the logarithmic correspondence: the interval from two
pitches of frequencies ⌫1, ⌫2 only depends on their frequency ratio ⌫2 : ⌫1. The other one is the octave
equivalence: two pitches an octave apart (ratio 2:1) are musically equivalent.

One can measure intervals in the multiplicative scale by their frequency ratio, or in the additive scale
by their size expressed in octaves, for instance. A frequency ratio of r corresponds to log2 r octaves. Other
important intervals are the semitone, which is 1/12 of an octave (therefore its ratio is 21/12), and the cent,
which is 1/100 of a semitone.

The human ear is exceedingly sensitive to pitch perception. The di↵erence limen (or just noticeable
di↵erence) between two tones can be, depending on the frequency and intensity, as small as 10 cents.
It can be much smaller if both sounds are played together. Therefore it is of the greater importance to
correctly tune a musical instrument.

Notes, scales, 12-edo. In some instruments (e.g. the violin) the player can play virtually any pitch within
its playing range. This is not true for other instruments (e.g. the piano, or most wind instruments), where
only a finite set of pitches is directly playable. A selection of pitches to play music is called a scale, and its
elements are the notes of the scale. The construction of these scales is one of the fundamental problems
in music theory. Notice that if we have chosen a scale on a theoretical basis, then we have to adjust or to
tune the pitches of the notes of the instrument to the pitches of the scale; therefore one frequently says
tuning system to mean a scale.

From ancient times it is known that two similar strings sounding together are more pleasant when their
fundamental frequencies are in a ratio of small integers. These intervals are called just, and, in addition to
the octave, the most important ones are the fifth (ratio 3:2), the fourth (4:3) and the major and minor thirds
(5:4 and 6:5). (These names have a historic origin, of course.) So one would look for scales whose notes
define such intervals. But, of course, other intervals will appear, and maybe they will be not so pleasant.
Moreover, the evolution of the musical language during the last centuries has added more requirements to
the scales, and as a result the problem of defining a scale does not have a universal optimal solution. What
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is more, from antiquity to modern times, dozens of scales have been proposed and put into practice, [9].

Among all of these scales, there is one that is pervasive in Western music since 19-th century. It is the
so-called equal temperament, and consists of 12 equal divisions of the octave (12-edo). The explanation
for this choice is that the 12-edo scale yields an excellent approximation of the just fifth (27/12 ⇡ 3 : 2) and
the just fourth, but also acceptable approximations of the just thirds.

It is worth noting that, for instance, the same name “fifth” is applied to two intervals that are indeed
di↵erent: the just fifth and the 12-edo fifth. This is usual: the traditional name of an interval applies to
all the intervals that have the same musical function regardless of their exact tuning. The same happens
with the notes: A4 has nowadays a “standard pitch” of 440Hz, but it is usual to tune this note to 442Hz,
for instance. In past times its values were much more diverse.

Due to the logarithmic correspondence, from the viewpoint of music theory, to define a scale one can
fix the pitch ⌫0 of a fundamental note with some degree of arbitrariness; what is really important are the
intervals rk = ⌫k : ⌫0 between this note and the other ones, ⌫k . From these intervals, and the fundamental
note, the other notes can be reconstructed as ⌫k = rk ⌫0. Alternatively, one can define a scale by giving
the steps between consecutive notes, ⌫k : ⌫k�1; for instance, the 12-edo scale has equal steps of ratio 21/12.

Beats, dissonance, consonance. Using trigonometric identities it is easily proved that the superposition
of two pure tones A sin(2⇡⌫1t) and A sin(2⇡⌫2t) can be expressed as 2A cos

�
2⇡ ⌫1�⌫2

2 t
�
sin

�
2⇡ ⌫1+⌫2

2 t
�
. If

the frequency di↵erence ⌫1�⌫2 is small (about less than 10–15Hz), this is perceived as a sound of frequency
⌫ = ⌫1+⌫2

2 with slowly fluctuating amplitude; these are the beats. If the frequency di↵erence is somewhat
bigger, one perceives some roughness. When the di↵erence is even higher, then one perceives two separate
tones [12, pp. 37–40]. This roughness gives rise to the notion of sensory dissonance; this is the only notion
of dissonance we are concerned about, though there are others (see, for example, [11] and [15, Ch. 5]).

Now, consider two (or more) complex tones sounding together: they have many partials that may
be close in frequencies. In the middle of the 19-th century, H. Helmholtz described the dissonance as the
roughness produced by close partials, and the consonance as the exceptional condition where this roughness
almost disappears. By computing the beats of the partials of two harmonic tones, Helmholtz showed that
the aforementioned just intervals (octave, fifth, fourth, thirds) are more consonant than others [8, p. 193],
in good agreement with music theory. This result can be easily understood: just notice that, if the
fundamental frequencies f , f̃ of two harmonic tones are in a ratio of small integers f̃ : f = ` : k , then the
`-th partial of the first tone will coincide with the k-th partial of the second one; a slight change of f̃ would
lead to close but di↵erent partials, and therefore to some roughness.
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of the non-abelian Plünecke–Ruzsa inequalities which makes no use of the method

introduced by Petridis. Analogous inequalities for iterated products of two distinct

sets are also obtained.

Keywords: Additive combinatorics,

combinatorial number theory, growth

in groups.

MSC (2010): Primary 11B13,

11B30, 11P70. Secondary 20D60.

Received: December 2, 2015.

Accepted: December 31, 2016.

Acknowledgement

The author was partially supported by grant

2015/COLAB/00069 of the Spanish Minis-

terio de Educación, Cultura y Deporte. He

would also like to thank Profs. Juanjo Rué
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Set growth in groups

1. Introduction

The theory of set addition was initiated by Freiman [2] in the 1960’s in the context of abelian groups.
More recently, a lot of e↵ort has been directed at extending this theory to the non-abelian case, as well
as searching for connections between this and many other areas of mathematics, such as Lie group theory,
number theory, or probability theory; see [1, 3]. In this context, the group operation is usually referred to
as set multiplication, instead of set addition. The product of two sets is defined as

AB = {ab | a 2 A, b 2 B}.

One can also define iterated product sets recursively, and define the inverse of a set as the set of the
inverses. Note that the inverse of a set has the same size as the set itself.

One of the most basic and important problems in this setting is bounding the growth of iterated product
sets. Some trivial tight bounds can be found, but a more interesting problem arises when bounding iterated
product sets, given a bound for the base product set |AA|  ↵|A|. In this sense, the first important result
is Plünnecke’s inequality, which was first proved in Plünnecke [5] in the late 1960’s, and has become one of
the most commonly used tools in additive combinatorics. His proof is based on a graph-theoretic method,
using what he called commutative graphs in order to obtain the following result.

Theorem 1.1 (Plünnecke’s inequality). Let j, h be two non-negative integers such that j < h, and let A

and B be finite sets in a commutative group. Assume that |A| = m and |AB j | = ↵m. Then, there exists

a non-empty set X ✓ A such that |XBh|  ↵
h
j |X |.

The proof is simple in its technical parts, but long and arduous. Variations of this proof have been used
to prove some more general results.

Ruzsa [6] rediscovered Plünnecke’s work by providing a proof based on Menger’s theorem on graph
theory, and used some of his own techniques to obtain some more general results. One of the most
important states as follows.

Theorem 1.2 (Plünnecke–Ruzsa inequality). Let A and B be finite sets in a commutative group, and j

be a positive integer. Assume that |BAj |  ↵|B |. Then, for any nonnegative integers k and l such that

j  min{k , l}, we have that |Al
A
�k |  ↵

k+l
j |B |.

The main limitation of these results is that they only hold in abelian groups (in fact, it is usual to
write them using additive notation). Furthermore, one can find counterexamples for an extension to the
non-commutative case. The only exception to this rule is when considering triple product sets; in this
case, Plünnecke’s graph-theoretic method can be used to obtain some results (see, for instance, Section 2).
For this reason, finding statements that resemble those of Plünnecke and Ruzsa and hold in the non-
commutative setting recently became an interesting problem.

Under these circumstances, Tao was the first to realise, in the late 2000’s, that one has to impose a
further restriction on the sets under consideration. In some sense, it is enough to see that the growth of
triple products of a set is bounded, |AAA|  ↵|A|, in order to bound all its iterated product sets. He also
proved that one can weaken this condition to |AaA|  ↵|A| for every a 2 A, and a bound for any product
sets of A can be given. His more general theorem in this setting can be stated as follows.
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Theorem 1.3 (Tao, [10]). Let A be a finite set in a group. Assume that |AaA|  ↵|A| for every a 2 A, and

that |AA|  ↵|A|. Then, there exists some absolute constant c such that, for any signs ✏1, ... , ✏h 2{� 1, 1},
|A✏1A✏2 · · ·A✏h |  ↵ch|A|.

Setting all the signs to be equal in Theorem 1.3, one obtains the following corollary.

Corollary 1.4. Let A be a finite set in a group such that |AaA|  ↵|A| for every a 2 A, and |AA|  ↵|A|.
Then, there is an absolute constant c such that |Ah|  ↵ch|A|.

In 2011, Petridis presented a new method to prove estimates of the growth of product sets; see [4].
With his new technique, he was able to give an elementary proof of Plünnecke’s inequality and several
other results. He also used his method to give a specific value to the absolute constant in Corollary 1.4.

Theorem 1.5 (Petridis). Let A be a finite set in a group. Suppose that |AA|  ↵|A| and |AaA|  �|A|
for every a 2 A. Then, for all h > 2, |Ah|  ↵8h�17�h�2|A|.

In the statement of Tao’s theorem we had ↵ = � so, Petridis’s result gives a constant c = 9 as an
upper bound for c . The same approach using Petridis’s new method serves to obtain bounds in similar
settings, when considering more than one set.

In this paper, we work with the growth of sets under multiplication in the non-commutative setting,
and with results similar to Theorem 1.3 and Theorem 1.5. In particular, one of the results is a weaker
version of Theorem 1.5 that can be obtained without reference to Petridis’s new method, and hence could
have been developed before.

Theorem 1.6. Let A be a finite set in a group such that |AA|  ↵|A| and |AaA|  �|A|, for every a 2 A.

Then, for any h > 2, |Ah|  ↵9h�19�h�2|A|.

Additionally, we use Theorem 1.5 in order to obtain estimates for the size of iterated products of two
di↵erent sets. We also exploit it in order to give a specific value for the constant c in Theorem 1.3.

Theorem 1.7. Let A be a non-empty finite set in a group such that |AA|  ↵|A| and |AaA|  �|A|, for
every a 2 A. Then, for any signs ✏1, ... , ✏h 2{� 1, 1}, |A✏1A✏2 · · ·A✏h |  ↵8h�15 �h�2|A|.

The remainder of this paper is divided in the following way. In Section 2 we present the three results
that are needed in order to obtain our new results. In Section 3 we use these results to present the proof
of Theorem 1.6, and use it to give a specific value to the constant in Corollary 1.4. Finally, in Section 4
we use Theorem 1.5 and the tools from Section 2 to prove Theorem 1.7. Furthermore, we prove several
results when considering the product of two di↵erent sets.

2. Tools

In this section we present the tools needed for the proofs of the results of Sections 3 and 4. Two of
them are elementary, and their proofs are presented here for the sake of completeness. The third one is
a non-commutative theorem by Ruzsa, which cannot be proved without a thorough presentation of the
graph-theoretic method designed by Plünnecke. An account of its proof can be found, for example, in [9].

The first versions of the tools we present here were developed specifically for the abelian case. However,
they could easily be extended to the non-commutative setting. The first of these tools is known as Ruzsa’s
triangle inequality.
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Theorem 2.1 (Ruzsa’s triangle inequality, [7]). Let X , Y and Z be finite non-empty sets in a (not

necessarily commutative) group. Then, |X ||YZ�1|  |YX�1||XZ�1|.

Proof. The idea of the proof is to find an injection of X ⇥ (YZ�1) into (YX�1)⇥ (XZ�1). Since the sizes
of these sets are |X ||YZ�1| and |YX�1||XZ�1|, respectively, this yields the result.

Consider the following map:

' : X ⇥ (YZ�1) �! (YX�1)⇥ (XZ�1)

(x , yz�1) 7�! (yx�1, xz�1).

We would like to see that this is an injection. First, observe that an element yz
�1 2 YZ

�1 may come
from di↵erent elements y , y 0 2 Y and z , z 0 2 Z such that yz

�1 = y
0
z
0�1. Hence, we must first fix a

representation in Y , Z for each element of YZ�1. We do so by defining an injection f : YZ�1 �! Y ⇥ Z

such that f (a)Y f (a)
�1
Z = a for every a 2 YZ

�1, where f (a)Y denotes the first coordinate of f (a), and
f (a)Z denotes the second. Such an injection exists because of the definition of the set YZ�1. For example,
if we give the elements of Y some order y1 < y2 < · · · < yk , we could map a to the pair (yi , zj) such that
yiz

�1
j = a and the index i is minimum.

Now, assume that '(x , a) = '(x 0, a0). Then, f (a)Y x�1 = f (a0)Y x 0
�1 and xf (a)�1

Z = x
0
f (a0)�1

Z and,
multiplying these two equalities, we get that f (a)Y f (a)

�1
Z = f (a0)Y f (a0)

�1
Z . By definition of f , this means

that a = a
0. Substituting this in the former equations yields x = x

0 so, ' is an injection.

The second tool is the simplest of a group of results known as covering lemmas.

Lemma 2.2 (Ruzsa’s covering lemma, [8]). Let A and B be finite sets in a group G. Assume that

|AB |  ↵|A|. Then, there exists a non-empty set S ✓ B such that |S |  b↵c and B ✓ A
�1

AS.

Proof. The proof follows from choosing S ✓ B in the right way. Select S to be maximal subject to As1

being disjoint with As2 for every pair s1, s2 2 S . This is equivalent to choosing S to be maximal subject
to |AS | = |A||S | being true.

Now, take b 2 B . We distinguish two possible cases: if b 2 S then, for any a 2 A, we have that
b = a

�1
ab 2 A

�1
AS . Otherwise, b /2 S , and b cannot be added to S without breaking the maximality

condition so, there must be an element s 2 S such that Ab \ As 6= ?; equivalently, there exist some
elements s 2 S , a, a0 2 A such that ab = a

0
s hence, b = a

�1
a
0
s 2 A

�1
AS .

Finally, Ruzsa’s non-commutative bound for the product set of three sets in a non-commutative setting
can be stated as follows.

Theorem 2.3 (Ruzsa,[9]). Let A, B and C be finite sets in a group G. Assume that |AB |  ↵1|A| and
|CA|  ↵2|A|. Then, there exists a set ? 6= X ✓ A such that |CXB |  ↵1↵2|X |.

3. An explicit value for Tao’s theorem

A combination of the three tools presented in the previous section can be used to give a value to the
constant c in Tao’s Corollary 1.4. We start by using Ruzsa’s triangle inequality to prove a lemma that
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appeared in Petridis [4]. Let us mention that this lemma is not related to Theorem 1.5 of said paper, which
is its main contribution.

Lemma 3.1 (Petridis). Let A and B be finite non-empty sets in a group. Suppose that |AA|  ↵|A| and
|ABA|  ↵2|A|. Then, |AB�1

BA
�1|  ↵6|A|.

Proof. In Theorem 2.1, take X = A and Y = Z = AB
�1. Then, we have that

|A||AB�1
BA

�1|  |AB�1
A
�1||ABA�1| = |ABA�1|2

since
�
AB

�1
A
�1

��1
= ABA

�1 and a set and its inverse have the same cardinality. In order to bound this,
take Theorem 2.1 again and consider X = A

�1, Y = AB and Z = A. This yields

|A||ABA�1|  |ABA||A�1
A
�1| = |ABA||AA|  ↵3|A|2

so, |ABA�1|  ↵3|A|. Substituting this above and dividing by |A| results in the statement.

We can use this to prove the following result.

Theorem 3.2. Let A be a finite set in a group. Assume that |AA|  ↵|A| and |AaA|  �|A|, for every
a 2 A. Then, |AAA|  ↵8�|A|.

Proof. We can use Theorem 2.3 setting A = C = B . The theorem states that there exists some set T ✓ A

such that |ATA|  ↵2|T |.
We can now use the trivial bound |TA|  |ATA|  ↵2|T | for the hypothesis of Lemma 2.2. Applying

this covering lemma, we have that there exists a set S ✓ A of size |S |  ↵2 such that A ✓ T
�1

TS . Hence,
we have that AAA ✓ AT

�1
TSA.

Consider Ruzsa’s triangle inequality in the form of Theorem 2.1, and substitute X = A, Y = AT
�1

T ,
and Z = A

�1
S
�1 to obtain |A||AAA|  |A||AT�1

TSA|  |AT�1
TA

�1||ASA|.
Now, we can use Lemma 3.1 to bound the first of these product sets. We can do this because we have

|AA|  ↵|A|, and |ATA|  ↵2|T |  ↵2|A| since T ✓ A, so we have all the hypothesis needed. To bound
the second one, consider

|ASA| =

�����
[

s2S
AsA

����� 
X

s2S
|AsA| 

X

s2S
�|A| = |S |�|A|  ↵2�|A|.

Putting everything together, we have that |A||AAA|  ↵6|A|↵2�|A| = ↵8�|A|2; and dividing by |A| gives
the desired result.

Now, we can use this theorem as a base case to inductively obtain bounds on the size of higher product
sets.

Proof of Theorem 1.6. The proof is done by induction on h. The base case h = 3 has been proved in
Theorem 3.2. Let us prove the general case. Assume that h > 3. Using Ruzsa’s triangle inequality with
X = A

�1, Y = AA and Z
�1 = A

h�2, we have

|Ah|  |AAA||A�1
A
h�2|

|A| .
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Taking now X = A, Y = A
�1 and Z

�1 = A
h�2 yields

|A�1
A
h�2|  |AA||Ah�1|

|A| .

Putting both equations together and using Theorem 3.2, we obtain |Ah|  ↵9�|Ah�1|, and the last term
is bounded by the induction hypothesis.

In the particular case when � = ↵, this result gives us c = 10 in the statement of Tao’s Corollary 1.4.
This constant is worse that the one obtained in Petridis [4] by one unit. However, it can be obtained
without using Petridis’s new method, so it is interesting by itself. Observe that Plünnecke’s graph-theoretic
method is necessary in order to obtain this bound, as it is needed to prove Theorem 2.3.

4. Further results

We can use Theorem 1.6 in order to get new product estimates. One may consider more sets and impose
further restrictions on them. For example, we may consider the iterated product of two sets A and B with
restrictions over the product sets of A, the product sets of A and B , and the size of each other. With this,
we can obtain a bound for iterated product sets of two sets. As we have already observed that Theorem 1.5
gives a better bound on product sets than Theorem 1.6, we will use Petridis’s result in this section in order
to obtain tighter bounds.

We start with a result giving a bound for the size of the product set of A and an iterated product
of B ’s. From this point onwards, Ruzsa’s triangle inequality (i.e., Theorem 2.1) will be used repeatedly
without warning, with X always being a simple set A or B , or one of their inverses.

Theorem 4.1. Let A and B be two finite non-empty sets in a group. Assume that |AA|  ↵|A|, |AaA| 
�|A| for every a 2 A, |AB |  �|A|, |AbB |  "|A| for every b 2 B, and |A|  �|B |. Then, for any k � 2,

|ABk | 
⇢

↵16(k�1) �2(k�1) �k�2 �2k�3 "k�1|A| if k is even,

↵16(k�1) �2(k�1) �k�1 �2k�1 "k�1|A| if k is odd.

Proof. The proof is done by induction on k . We need two base cases in order to complete the induction.

When k = 2 we can apply Ruzsa’s covering lemma due to the third condition on the sets. This gives
us a set S ✓ B such that |S |  b�c and B ✓ A

�1
AS . Hence,

|ABB |  |AA�1
ASB |  |AA�1

AA
�1||ASB|

|A| .

The second term in this expression can be bounded as

|ASB | =

�����
[

s2S
AsB

����� 
X

s2S
|AsB | 

X

s2S
"|A| = |S |"|A|  �"|A|. (1)

In order to bound the first one, use Theorem 1.5 to obtain

|AA�1
AA

�1|  |AAA�1|2

|A|  (|AA||AAA|)2

|A|3  ↵16�2|A|. (2)
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Putting the two expressions together we have

|ABB |  ↵16�2�"|A|. (3)

For k = 3, we use again the covering lemma with the same conditions as above and get

|ABBB |  |AA�1
ASBB |  |AA�1

AA
�1||ASBB |
|A| ,

as B ✓ A
�1

AS for some S ✓ B with |S |  �. The first term is bounded by (2). In order to bound the
second term, consider that

|A||ASBB |  |ASBA�1||AB |  �|ASBA�1||A|,

|B ||ASBA�1|  |ASB ||B�1
BA

�1|  �"|B�1
BA

�1||A|,
|A||B�1

BA
�1|  |B�1

A
�1||ABA�1|  �|ABA�1||A|

and
|B ||ABA�1|  |ABB ||B�1

A
�1|  �|A|↵16�2�"|A|,

where the last inequalities in each line come from (1) in the second line, (3) in the fourth, and the statement
hypothesis in all the others. With this,

|ASBA�1|  �"
|A|
|B |��

|A|
|B |↵

16�2�"|A|  ↵16�2�2�4"2|A| (4)

and |ABBB |  ↵16�2�↵16�2�2�4"2|A| = ↵32�4�2�5"2|A|.
For the general case, we can use the covering lemma in the same way. We have that

|ABk |  |AA�1
ASB

k�1|  |AA�1
AA

�1||ASBk�1|
|A| .

The first term is, again, bounded by (2), and the second is bounded as |A||ASBk�1|  |ASBA�1||ABk�2|.
The first term is now bounded by (4), and the second one is bounded by the induction hypothesis. Putting
everything together the result follows.

Using the previous result, we can give a general bound for iterated products of A’s and B ’s, as long as
all the A’s come before the B ’s.

Theorem 4.2. Let A and B be two finite non-empty sets in a group, with the conditions from Theorem 4.1.

Then, for any l � 2 and k � 2,

|Al
B

k | 
⇢

↵8l+16k�24 �2l+2k�3 �k�2 �2k�3 "k�1|A| if k is even,

↵8l+16k�24 �2l+2k�3 �k�1 �2k�1 "k�1|A| if k is odd.

Proof. As before, we can use Ruzsa’s triangle inequality (twice) to bound

|Al
B

k |  |Al+1||ABk ||AA|
|A|2 .

The three terms can now be bounded using Theorem 1.5, Theorem 4.1 and the statement hypotheses,
respectively, and this immediately yields the result.
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In order to complete all the bounds of product sets of three or more sets as those we have presented
so far, the only remaining case is that when l � 2 and k = 1.

Theorem 4.3. Let A and B be two finite non-empty sets in a group, with the conditions from Theorem 4.1.

Then, for any l � 2, |Al
B |  ↵8(l�1)�l�1�|A|.

Proof. We start by proving the base case l = 2. Using Ruzsa’s triangle inequality we have

|AAB |  |AAA�1||AB |
|A|

and

|AAA�1|  |AAA||AA|
|A|

so, using Theorem 1.5 and putting everything together, we get |AAB |  ↵7�↵�|A|.
For the general case (l > 2), observe that

|Al
B |  |AAA�1||Al�1

B |
|A| .

The first term can be bounded using Theorem 2.1 and Theorem 1.5 as |AAA�1|  ↵8�|A|, as before, and
the second is bounded by the induction hypothesis.

An easy corollary is obtained when taking B = A
�1 in Theorem 4.2. This would correspond to an

extension of the Plünnecke–Ruzsa inequality to the non-commutative case, when A = B .

Corollary 4.4. Let A be a non-empty finite set in a group such that |AA|  ↵|A| and |AaA|  �|A|, for
every a 2 A. For any k , l � 2, let m = min{k , l} and n = max{k , l}. Then,

|Al
A
�k |  ↵8n+21m�27 �2n+3m�4|A|.

Proof. Take B = A
�1. For this particular choice of sets we have � = 1 and, in virtue of Ruzsa’s triangle

inequality, |AA�1|  ↵2|A| and |AaA�1|  ↵�|A|. Substituting these into Theorem 4.2, we can write

|Al
A
�k | 

⇢
↵8l+21k�31 �2l+3k�4|A| if k is even,
↵8l+21k�27 �2l+3k�4|A| if k is odd.

First, observe that this can be written in such a way that it does not depend on the parity by taking the
worst exponent for each of the coe�cients. Since these coe�cients are all lower-bounded by 1 for this
choice of sets, this means we must take the highest exponents, which correspond to the odd case. Then,
for any k , l � 2 we may write

|Al
A
�k |  ↵8l+21k�27 �2l+3k�4|A|.

Observe now that this is a symmetric result. That is, the fact that a set and its inverse have the same
size means that |Al

A
�k | = |Ak

A
�l |. Then, as the bound given by the above expression is much weaker

when k > l , if this occurs one can use the bound for the size of the inverse set to obtain a better bound.
This is what allows us to take the minimum and the maximum of k and l .
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We can use this to obtain a particular bound for Tao’s Theorem 1.3 if we impose ↵ = �. In this case,
we have |Al

A
�k |  ↵10l+24k�31|A|.

If we want to obtain a constant c with respect to h = l+k , as appears in the statement of Theorem 1.3,
we have to consider the following. The exponent 10l + 24k � 31, for a fixed h, is increasing with k and
maximized when l = k because of the possibility to take the maximum and minimum of k and l . Hence,

10l + 24k � 31  10
h

2
+ 24

h

2
� 31  34

h

2
= 17h

so, we have c = 17 for all these di↵erent cases.

However, we can obtain a much better constant, in a more general setting, if we work with the sets A
and A

�1 from the beginning.

Proof of Theorem 1.7. We start with the base case h = 3. We must consider all the possible signs that
can appear in the exponents. By using Theorem 1.5, we have that

|AAA|  ↵7�|A|,

|AAA�1|  |AAA||AA|
|A|  ↵8�|A|,

|A�1
AA|  |AA||AAA|

|A|  ↵8�|A|,

and

|AA�1
A|  |AA�1

A
�1||AA|

|A|  ↵9�|A|.

The other four possible configurations are the inverses of these ones. Hence, in general,

|A✏1A
✏2A

✏3 |  ↵9�|A|.

For the general case, there are two di↵erent possibilities. First, assume ✏1 = ✏2. Then, take X = A
�✏1

in the statement of Ruzsa’s triangle inequality to obtain

|A||A✏1A
✏1A

✏3 · · ·A✏h |  |A✏1A
✏1A

✏1 ||A�✏1A
✏3 · · ·A✏h |  ↵7�|A�✏1A

✏3 · · ·A✏h ||A|.

If, on the contrary, ✏1 = �✏2, we have

|A||A✏1A
✏2A

✏3 · · ·A✏h |  |A✏1A
✏1 ||A✏2A

✏2A
✏3 · · ·A✏h |

 ↵|A✏2A
✏2A

✏2 ||A�✏2A
✏3 · · ·A✏h |

 ↵8�|A�✏2A
✏3 · · ·A✏h ||A|.

The worst exponent is given in the second case. The two last sets can be bounded by the induction
hypothesis.

Taking ↵ = � in the statement of Theorem 1.7, we obtain |A✏1A✏2 · · ·A✏h |  ↵9h�17|A|, for any signs
✏1, ... , ✏h 2{� 1, 1}. With this, we have an explicit constant value for the statement of Tao’s Theorem 1.3,
c  9, so we have that the same constant working when all signs are set to be equal serves in the rest of
cases as well.
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Compactification of a diagonal action

1. Introduction

Let (X , dX ) be a proper, non-compact CAT(�1) space. As examples of such spaces one can think of
complete simply connected Riemannian manifolds of negative sectional curvature, for instance the hyper-
bolic space, and of metric trees. For a review on CAT(�1) spaces one can consult the first section of
Bourdon [3]. Here, we consider a discrete and cocompact subgroup � of the isometries of (X , dX ), and the
diagonal action of � on the product space X ⇥ X ,

�⇥ X ⇥ X �! X ⇥ X
(�, x , y) 7! (�x , �y).

This action is not cocompact but one can try to attach to X ⇥ X a set ⌦ of ideal boundary points such
that the action on X ⇥ X [ ⌦ is cocompact.

The space (X ⇥ X , dX⇥X ), where dX⇥X denotes the standard product metric, is a proper metric
space and hence, it can be compactified by means of horofunctions; see, for instance, Ballmann–Gromov–
Schroeder [2, Sec. 3]. Since it is a CAT(0) space, the horofunctions are, in fact, Busemann functions and
the horofunction boundary coincides with the boundary by rays; see Ballmann [1, Prop. 2.5]. The action
of � extends continuously to an action by homeomorphisms on the boundary of the compactification, but
it is not clear if there is a subset of the boundary that can be a good candidate for ⌦. For this reason we
introduce the maximum metric in X ⇥ X , defined by

dmax((x , y), (x
0, y 0)) = max{dX (x , x 0), dX (y , y 0)},

for any (x , y), (x 0, y 0) in X ⇥ X . The space (X ⇥ X , dmax) is also a proper metric space and therefore, it
can also be compactified by horofunctions. However, it is not a CAT(0) space, since the geodesic segment
joining two points is not unique. The group � acts on (X ⇥ X , dmax) by isometries and the action can be
extended to an action by homeomorphisms on the ideal boundary, which we denote by @max

1 (X ⇥X ). The
compactification with respect to the metric dmax turns out to be more adapted to our problem. The main
result of this work is the fact that we can find a subset of @max

1 (X ⇥ X ) where the action of � is properly
discontinuous, and which compactifies the action of � on X ⇥ X :

Theorem 1.1. Let X be a proper, non-compact CAT(�1) space and � a group of isometries of X acting
in a properly discontinuous and cocompact way on X . There exist an open set ⌦ ⇢ @max

1 (X ⇥ X ) such
that the diagonal action of � on X ⇥ X [ ⌦ is properly discontinuous and cocompact.

The ideal boundary @max
1 (X ⇥ X ) can be interpreted in terms of the ideal boundary of X , which we

denote by @1X . We will see that @max
1 (X ⇥ X ) splits in a singular part, which is naturally homeomorphic

to @1X t @1X , and a regular part, which is homeomorphic, also in a natural way, to @1X ⇥ @1X ⇥ R.
If we denote by D the diagonal of @1X ⇥ @1X , the set ⌦ is just the subset of the regular part of the
boundary which corresponds, under the homeomorphism, to the set ((@1X ⇥ @1X ) \ D)⇥ R.

The set ⌦ is naturally homeomorphic to the set G of parametrized geodesics in X , equipped with the
topology of uniform convergence on compact sets. The identification gives more geometrical insight to the
solution of the problem. We consider the diagonal � of X ⇥X , and the nearest point retraction that sends
each point of X ⇥ X to its nearest point in �. This map can be extended in a continuous way to G , by
sending each geodesic g to the point (g(0), g(0)) in �. We use the continuous extension of the nearest
point retraction to show that the action of � on ⌦ is properly discontinuous and cocompact.
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2. Definitions and notations

In this section we review very briefly the main concepts that appear through the paper.

For us, a parametrized geodesic (or simply a geodesic) is an isometric embedding g : R ! X . We call
the image of a geodesic a geodesic line. A ray is an isometric embedding r : [0,1) ! X . And similarly, a
geodesic segment joining two points x and y is an isometric embedding xy : [a, b] ! X such that xy(a) = x
and xy(b) = y . We will make no distinction between a ray or a geodesic segment and their images.

A geodesic space is a metric space such that any two points can be joined by a geodesic segment. A
metric space is proper if its closed balls are compact. A geodesic metric space is proper if and only if it is
complete and locally compact; see Gromov [7, Thm. 1.10].

Let X be a metric space and � a geodesic triangle in X . A comparison triangle �̄H2 in the hyperbolic
plane H

2 (or �̄E2 in the Euclidean plane E
2) is a geodesic triangle in H

2 (or in E
2) with sides of the same

length than those of �. The space X is CAT(�1) (respectively, CAT(0)) if for any triangle �, any x , y
in � and their comparison points x̄ , ȳ in �̄H2 (respectively, �̄E2) satisfy d(x , y)  d(x̄ , ȳ). A CAT(�1)
space is, in particular, CAT(0); see Bridson–Haefliger [4, Part II, Thm. 1.12].

The action of � on X is properly discontinuous if, for every compact K ⇢ X , the set K \ �K is non
empty for finitely many � 2 �. And it is cocompact if there exists a compact K ⇢ X such that X = �K .

Given a metric space (X , d), the Gromov product of two points x and y in X with respect to a third
point z in X is defined as

(x |y)z =
1

2

�
d(z , y) + d(z , x)� d(x , y)

�
.

In a CAT(�1) space the product can be extended to points at infinity. Observe that a geodesic g determines
two rays, one with the same orientation than the geodesic itself and the other with the reversed orientation.
The equivalence classes of these rays are the ideal endpoints of the geodesic, we denote them by g(+1)
and g(�1) respectively. The Gromov product of the points g(+1) and g(�1) with respect to a base
point o, is given by

(g(+1)|g(�1))o =
1

2

�
�g(0)
g(+1)(o) + �g(0)

g(�1)(o)
�
,

where the functions �g(0)
g(+1), �

g(0)
g(�1) will be defined in Section 3. The definition of the Gromov product

is independent from the parametrization of the geodesic line L with ideal endpoints g(+1) and g(�1).
Observe that if o 2 L then it is 0. See, for instance, Ghys–de-la-Harpe [6, Ch. 2] and Bourdon [3, Sect.
2], for more about Gromov products.

3. Horofunction boundary of (X ⇥ X, dmax)

As we have stated in the introduction, let (X , dX ) be a proper, non-compact CAT(�1) space and consider
the product space X ⇥ X together with the maximum metric dmax,

dmax((x , y), (x
0, y 0)) = max{dX (x , x 0), dX (y , y 0)}.

The compactification via horofunctions of a proper metric space is explained in detail in Ballmann [1,
Ch.2] and Bridson–Haefliger [4, Part II, Sect.8]. The idea, which is in fact valid for any complete locally
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compact metric space, is due to Gromov [2, Sect.3]. It consists on embedding the space, in our case
(X ⇥X , dmax), into the space C⇤ of its continuous functions (with the topology of uniform convergence on
compact sets) modulo additive constant, via the map

◆ : X ⇥ X �! C⇤
(x , y) 7! [dmax((x , y), ·)],

assigning to each point in the space the class in C⇤ of the distance function with respect to this point.
The closure of the space, denoted by X ⇥ X

max
, is the closure of ◆(X ⇥ X ) in C⇤, and the ideal boundary,

denoted by @max
1 (X ⇥X ), is the set (X ⇥ X

max
)\ ◆(X ⇥X ). Both X ⇥ X

max
and @max

1 (X ⇥X ) are compact
since X ⇥ X is locally compact.

A horofunction is a continuous function such that its class belongs to @max
1 (X ⇥ X ). One can think

of horofunctions as limits of normalized distance functions. The level sets of a horofunction are known as
horospheres and the sublevel sets as horoballs. Observe that two horofunctions in the same equivalence
class di↵er by a constant and share the same set of horospheres and horoballs.

We can compactify in the same way the original space (X , dX ), since it is also a proper metric space. In
this case, since (X , dX ) is CAT(�1), the compactification obtained is homeomorphic to the compactification
by rays, where the points at infinity are equivalence classes of rays, and two rays c , c 0 are in the same
class if dX (c(t), c 0(t))  C for all t. The equivalence class of a ray c is denoted by c(1), the ideal
boundary of X by @1X , and an arbitrary point in @1X by ⇠. The horofunctions of a CAT(0) space are
in fact Busemann functions and can be written as �p

⇠ (·) = limt!1 dX (·, c(t)) � t, where c is a ray such

that c(0) = p and c(1) = ⇠ 2 @1X . Observe that �p

⇠ is the representative of ⇠ 2 @1X that satisfies

�p

⇠ (p) = 0. The following two properties about Busemann functions will be used:

(i) If a sequence {xn}n converges to a point ⇠ in @1X , then �o

⇠ (y) = limn!1 d(xn, y) � d(xn, o); see
Ballmann [1, Prop. 2.5].

(ii) �o

⇠ (y) = ��y

⇠ (o); see Bourdon [3, Sect.2.1].

Example 3.1. Let X be a complete simply connected n-dimensional Riemannian manifold X of sectional
curvature  �1, then @1X ⇠= Sn�1. In particular, @1H

n ⇠= Sn�1 ⇠= (Tx0H
n)1 for any x0 2 X .

Now we list all the possible boundary points obtained when compactifying (X ⇥ X , dmax). For the
calculations, we have chosen a base point O = (o, o) with o 2 X and then, as a representative of
a class of distance functions, the function dO

max((x , y), ·) = dmax((x , y), ·) � dmax((x , y), (o, o)). Then,
{[dmax(Pn, ·)]}n ! ⇠ if and only if {dO

max(Pn, ·)}n ! hO⇠ , where hO⇠ is the horofunction in ⇠ satisfying

hO⇠ (O) = 0.

Proposition 3.2. Every divergent sequence {(xn, yn)}n ⇢ (X ⇥ X , dmax) has a subsequence that satisfies,
except for permutations of xn and yn, one of the following possibilities:

(i) dX (xn, o) is bounded for all n, and {yn}n ! ⇠0 2 @1X;

(ii) {xn}n ! ⇠ 2 @1X, {yn}n ! ⇠0 2 @1X, and dX (xn, o)� dX (yn, o) ! C;

(iii) {xn}n ! ⇠ 2 @1X, {yn}n ! ⇠0 2 @1X, and dX (xn, o)� dX (yn, o) ! +1.
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Furthermore, for every (z , z 0) 2 X ⇥ X, the limit limn!1 dO
max((xn, yn), (z , z

0)) equals �o

⇠0(z
0) for the

possibility (i), max{�o

⇠ (z),�
o

⇠0(z
0) + C} for (ii), and �o

⇠ (z) for (iii).

Proof. We do the proof for case (II), the other two cases can be obtained in a similar fashion. Denote
Cn = d(xn, o)� d(yn, o) and assume Cn � 0, to simplify. Then,

dmax((xn, yn), (x , y))� dmax((xn, yn), (o, o)) = max{d(xn, x)� d(xn, o), d(yn, y)� d(yn, o)� Cn}.

Given ✏ > 0 and r > 0, we want to see that there is an N such that, for all n > N and all (x , y) 2 Bmax(O, r),

|max{d(xn, x)� d(xn, o), d(yn, y)� d(yn, o)� Cn}�max{�o

⇠ (x),�
o

⇠0(y)� C}| < ✏,

where Bmax(O, r) is the ball of center O = (o, o) and radius r in (X ⇥ X , dmax). There are four cases to
check. We do the case for which the first maximum is d(xn, x) � d(xn, o) and the second maximum is
�o

⇠0(y)�C , the other are similar. Because of the definition of Busemann function, there is an N such that,
for all (x , y) 2 Bmax(O, r) and all n > N,

d(xn, x)� d(xn, o)� �o

⇠ (x) < ✏,

d(yn, y)� d(yn, o)� Cn � (�o

⇠0(y
0)� C ) > �✏.

On the one hand, we have

d(xn, x)� d(xn, o)� (�o

⇠0(y)� C ) = d(xn, x)� d(xn, o)� �o

⇠ (x) + �o

⇠ (x)� (�o

⇠0(y)� C ) < ✏

and

d(xn, x)� d(xn, o)� (�o

⇠0(y)� C ) =d(xn, x)� d(xn, o)� (d(yn, y)� d(yn, o)� Cn)+

d(yn, y)� d(yn, o)� Cn � (�o

⇠0(y
0)� C ) > �✏.

The set of boundary points with a representative of the form �o

⇠ (z) or �
o

⇠0(z
0) is called the singular part

of the boundary, denoted @max
1 (X ⇥ X )sing. The rest of the points, i.e., those with a representative of the

form max{�o

⇠ (z),�
o

⇠0(z
0) + C}, form the regular part of the boundary, denoted by @max

1 (X ⇥ X )reg.

Observe that, for any constant C 0, the function max{�o

⇠ (z),�
o

⇠0(z
0) + C} + C 0 = max{�o

⇠ (z) +
C 0,�o

⇠0(z
0) + C + C 0} is in the same class as max{�o

⇠ (z),�
o

⇠0(z
0) + C}. Since two Busemann functions

of X associated to the same point ⇠ 2 @1X di↵er by a constant, for each C 0 we can find points p and p0

in X such that �p

⇠ (z) = �o

⇠ (z) + C 0 and �p0

⇠0 (z
0) = �o

⇠0(z
0) + C + C 0. So, the regular points are in fact the

classes modulo constant of the functions max{�p

⇠ (z),�
p0

⇠0 (z
0)} for all p, p0 2 X and ⇠, ⇠0 2 @1X .

Proposition 3.3. There is a natural homeomorphism 'sing : @max
1 (X⇥X )sing �! @1Xt@1X that consists

in associating to a Busemann function that takes values only in the first (second) factor of X ⇥ X, the
same Busemann function viewed as a point of the first (second) factor in @1X t @1X.

Proof. It follows from the fact that the set of Busemann functions in one factor is naturally identified to
the boundary of X .

The regular part of the boundary can also be identified with a more easy to handle object.
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Proposition 3.4. For each choice of base point (o, o 0) 2 X ⇥ X, there is a natural homeomorphism

'reg : @max
1 (X ⇥ X )reg �! @1X ⇥ @1X ⇥ R

h
max{�p

⇠ (z),�
p0

⇠0 (z
0)}

i
7! (⇠, ⇠0,�p0

⇠0 (o)� �p

⇠ (o
0)).

(1)

Remark 3.5. Under our choice of base point, the homeomorphism (1) takes the form

'reg : @max
1 (X ⇥ X )reg �! @1X ⇥ @1X ⇥ R

max{�o

⇠ (z),�
o

⇠0(z
0) + C} 7! (⇠, ⇠0,C ).

(2)

Proof of Proposition 3.4. The map (1) is well defined since two horofunctions in the same class di↵er by

a constant, and max{�p

⇠ ,�
p0

⇠0 } 6= max{�q
⌘ ,�

q0

⌘0 } for (⇠, ⇠0) 6= (⌘, ⌘0). To see this, normalize the Busemann

functions with respect to the same point; i.e., max{�p

⇠ ,�
p0

⇠0 } = max{�p

⇠ ,�
p

⇠0 + A} and max{�q
⌘ ,�

q0

⌘0 } =

max{�p
⌘ + B ,�p

⌘0 + C} for some constants A, B , C . Choose a sequence zn ! ⇠ along the geodesic ray

joining p and ⇠. Then �p

⇠ (zn) ! �1 and �p
⌫ (zn) ! +1 for all ⌫ 2 @1X such that ⌫ 6= ⇠. Using this

property one can see that ⇠ = ⌘ and ⇠0 = ⌘0 if max{�p

⇠ ,�
p0

⇠0 } = max{�q
⌘ ,�

q0

⌘0 }.
Now, for each class we choose the representative of the form max{�o

⇠ (z),�
o

⇠0(z
0) + C} and prove that

the map (2) is a homeomorphism. Injectivity is clear. For the exhaustivity, given (⇠, ⇠0,C ), one can see
that the sequence (g(n), g(�n)) where g is a parameterization of the geodesic line joining ⇠0 and ⇠ with
�o

⇠ (g(0))� �o

⇠0(g(0)) = C , has limit max{�o

⇠ ,�
o

⇠0 + C}.
For the continuity, take a sequence max{�o

⇠n
,�o

⇠0n
+ Cn} converging to a point max{�o

⇠ ,�
o

⇠0 + C}. The
Cn must be bounded, otherwise the sequence would converge to a Busemann function in one factor. This
and the compactness of the set of Busemann fuctions of X , implies that (⇠n, ⇠0n,Cn) converges to some
point (⌘, ⌘0,C 0). Since the maximum function is continuous, max{�o

⇠n
,�o

⇠0n
+ Cn} should also converge to

max{�o
⌘ ,�

o

⌘0 + C}. Therefore, max{�o

⇠ ,�
o

⇠0 + C} = max{�o
⌘ ,�

o

⌘0 + C} and (⇠, ⇠0,C ) = (⌘, ⌘0,C 0).

The continuity of the maximum function also assures that the inverse of(2) is continuous.

Example 3.6. For X a complete simply connected n-dimensional Riemannian manifold of sectional curva-
ture  �1, @max

1 (X ⇥ X )reg ⇠= Sn�1 ⇥ Sn�1 ⇥ R and @max
1 (X ⇥ X )sing ⇠= Sn�1 t Sn�1. It can be shown

that the boundary of X ⇥ X is homeomorphic to a (2n � 1)-sphere:

@max
1 (X ⇥ X ) ⇠= Join(Sn�1, Sn�1) ⇠= S2n�1.

4. An ideal domain for the action of �

From now on, � will be a discrete and cocompact subgroup of the isometries of X . Recall that we were
interested in the diagonal action of � on X ⇥X . In this section we look for an open subset of @max

1 (X ⇥X ),
where the action of � is good enough. Let D denote the diagonal in @1X ⇥ @1X ,

D = {(⇠, ⇠) | ⇠ 2 @1X} ⇠= @1X ,

and let ⇤(x ,y) be the limit set of the orbit of the point (x , y) in X ⇥ X ,

⇤(x ,y) = �(x , y) \ @max
1 (X ⇥ X ).
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Notice that ⇤(x ,y) depends on (x , y) 2 X ⇥X since this space is not CAT(�1). Define the limit set of � as

⇤� =
[

(x ,y)2X⇥X

⇤(x ,y).

Proposition 4.1. The diagonal action of � on X ⇥ X satisfies: (i) ⇤� ⇢ @max
1 (X ⇥ X )reg; and (ii)

'reg (⇤�) = D ⇥ R.

Proof. First observe that the limit of any sequence (�nx , �ny) is in D⇥R. Indeed, by the triangle inequality,
|d(�nx , o)�d(�ny , o)|  d(x , y) so, the limit is a regular point and, since d(�nx , �ny) = d(x , y), if �nx ! ⇠
then �ny ! ⇠ because X is CAT(�1).

Let us see next that any point (⇠, ⇠,C ) is in the limit set. Let �n be a sequence in � such that �n ! ⇠.
Observe that such a sequence exists since � is cocompact and hence its limit set in X is the whole @1X .
Let ⇠0 2 @1X be the limit of the sequence ��1

n and take any point (x , y) satisfying �o

⇠0(x)� �o

⇠0(y) = C .
For instance, one can take a point (g(t), g(t 0)), where g is the ray joining o and ⇠0, and t � t 0 = C . Then

lim
n!1

d(�nx , o)� d(�ny , o) = lim
n!1

d(x , ��1
n o)� d(��1

n o, o)� (d(y , ��1
n o)� d(��1

n o, o))

= �o

⇠0(x)� �o

⇠0(y) = C .

Hence, the limit of the sequence (�nx , �ny) is the point (⇠, ⇠,C ).

As a candidate for the domain at infinity, we choose ⌦ ⇢ @max
1 (X ⇥ X )reg such that ⌦ ⇠= (@1X ⇥

@1X \ D)⇥ R under the homeomorphism (1). Observe that we have excluded the whole region D ⇥ R.

Now consider the set G of parameterized geodesics in X . This set is the same as the set of oriented
geodesic lines with a distinguished base point and, as we show next, it is in correspondence with the points
of ⌦. Observe that there is a natural action of � on G : an element � 2 � sends a geodesic g to �g .

Lemma 4.2. The following map is a bijection

f : G �! ⌦
g 7! limn!1(g(n), g(�n)).

Proof. First we check that, given a geodesic g in G , the limit of the sequence {(g(n), g(�n))}n belongs
to ⌦. In order for this limit to be a regular point of the boundary, the sequence {(g(n), g(�n))}n needs
to belong to case (ii) of Proposition 3.2 so, the limit of the di↵erence dX (g(n), o)� dX (g(�n), o) has to
be a real constant. This follows from the next calculation:

lim
n!1

⇣
dX (g(n), o)� dX (g(�n), o)

⌘
= lim

n!1

⇣
dX (g(n), o)� dX (g(n), g(0))

+dX (g(�n), g(0))� dX (g(�n), o)
⌘

= �g(0)
g(+1)(o) + �g(0)

g(�1)(o)

= �o

g(�1)(g(0))� �o

g(+1)(g(0)) 2 R.

Here, we have used the fact that dX (g(n), g(0)) = dX (g(�n), g(0)) and the definition of Busemann
function. Henceforth, the limit of the sequence {(g(n), g(�n))}n is the point

�
g(+1), g(�1),�o

g(�1)(g(0))� �o

g(+1)(g(0))
�
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in @1X ⇥ @1X ⇥ R under the homeomorphism (2). Since g(+1) 6= g(�1), this limit belongs to ⌦.

Let us check the injectivity of the map f . Suppose we have two di↵erent geodesics g and g 0 such that
f (g) = f (g 0). Then, g(+1) = g 0(+1) and g(�1) = g 0(�1) and, since given two ideal points in a
CAT(�1) space there is a unique geodesic line having them as ideal endpoints (see Bridson–Haefliger [4,
Thm. 9.33]), both geodesics must be di↵erent parametrizations of the same geodesic line L. Now,
observe that the di↵erence �o

g(�1)(g(0)) � �o

g(+1)(g(0)) can be rewritten using the Gromov product

(g(+1)|g(�1))o as

�o

g(�1)(g(0))� �o

g(+1)(g(0)) = �g(0)
g(+1)(o)� �g(0)

g(�1)(o))

= 2(�g(0)
g(+1)(o)� (g(+1)|g(�1))o)

= �2(�o

g(+1)(g(0)) + (g(+1)|g(�1))o).

Therefore, the two parametrizations satisfy

�2(�o

g(+1)(g(0)) + (g(+1)|g(�1))o) = �2(�o

g 0(+1)(g
0(0)) + (g 0(+1)|g 0(�1))o)

and hence, �o

⇠ (g(0)) = �o

⇠ (g
0(0)). Since both g(0) and g 0(0) belong to L, we must have g(0) = g 0(0) so,

both parametrizations of L do coincide.

To finish, let us check the exhaustivity of f . Let (⇠+, ⇠�, r) be a point in ⌦ (seen through the
homeomorphism (1)). We are looking for a geodesic g such that limn!1{(g(n), g(�n))}n = (⇠+, ⇠�, r).
We have already calculated the limit of such a sequence at the beginning of the proof, and we know
it is the point

�
g(+1), g(�1),�o

g(�1)(g(0)) � �o

g(+1)(g(0))
�
. So, we look for a geodesic such that

g(+1) = ⇠+, g(�1) = ⇠�, and �o

g(�1)(g(0))��o

g(+1)(g(0)) = r . Let L be the geodesic line with ideal

endpoints ⇠+ and ⇠�. Consider a parametrization g(t) of L. Since the functions �o

⇠+
(g(t)) and �o

⇠�
(g(t))

are lineal with slope ±1, respectively, there is a unique point p in L satisfying �o

⇠�
(p) � �o

⇠+
(p) = r . The

parametrization g 0(t) of L such that g 0(0) = p is the one we are looking for, since it satisfies g 0(+1) = ⇠+,
g 0(�1) = ⇠�, and �o

g 0(�1)(g
0(0))� �o

g 0(+1)(g
0(0))) = r .

Remark 4.3. Observe that what we have checked in the proof of Lemma 4.2 is, in fact, the bijectivity of
the map 'reg � f .

We consider in G the topology of uniform convergence on compact sets.

Theorem 4.4. The following map is an equivariant homeomorphism

f : G �! ⌦
g 7! limn!1(g(n), g(�n)).

Proof. To see that f is a homeomorphism, consider the map

f 0 : G �! ((@1X ⇥ @1X ) \ D)⇥ R

g 7!
⇣
g(+1), g(�1), �g(0)

g(+1)(o)� �g(0)
g(�1)(o)

⌘
,

which is just 'reg � f and which, as we have seen along the proof of Lemma 4.2, it is a bijection. Let � be
the Hopf parametrization

� : G �! ((@1X ⇥ @1X ) \ D)⇥ R)

g 7!
⇣
g(+1), g(�1),�g(0)

g(+1)(o)
⌘
,
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which is a homeomorphism (see Bourdon [3, Sect. 2.9]), and let h be the map

h : ((@1X ⇥ @1X ) \ D)⇥ R) �! ((@1X ⇥ @1X ) \ D)⇥ R)
(⇠+, ⇠�, r) 7!

�
⇠+, ⇠�, 2(r � (⇠+|⇠�)O)

�
,

which is also a homeomorphism. Now, the following diagram commutes

. G f 0 //

�
✏✏

((@1X ⇥ @1X ) \ D)⇥ R).

((@1X ⇥ @1X ) \ D)⇥ R)

h

33

Indeed, for any g 2 G ,

h � �(g) = h((g(+1), g(�1),�g(0)
g(+1)(o)))

= (g(+1), g(�1), 2(�g(0)
g(+1)(o)� (g(+1)|g(�1))o)

= (g(+1), g(�1),�g(0)
g(+1)(o)� �g(0)

g(�1)(o))

= f 0(g).

Since both � and g are homeomorphisms, f 0 is a homeomorphism. And since f 0 = 'reg � f and �reg is a
homeomorphism, our map f is a homeomorphism too.

To finish, observe that the map f is equivariant since, for every � 2 � and g 2 G ,

f (�g) = lim
n!1

(�g(n), �g(�n)) = � lim
n!1

(g(n), g(�n)) = �f (g).

The next proposition is a consequence of Theorem 4.4 and the properties of G . It will also be a
consequence of Theorem 5.9.

Proposition 4.5. The action of � on ⌦ is cocompact and properly discontinuous.

5. Compactness of (X ⇥ X [ ⌦)/�

We define a topology in X ⇥ X [ G in the following way. We keep the same topology in X ⇥ X and
G , and we say a sequence {(xn, yn)}n in X ⇥ X converges to a point g in G if and only if the following
three conditions hold: (i) {xn}n ! g(+1), (ii) {yn}n ! g(�1); and (iii) dX (xn, o) � dX (yn, o) !
�o

g(�1)(g(0))� �o

g(+1)(g(0)). With this topology, X ⇥ X [ G and X ⇥ X [ ⌦ are homeomorphic.

Now, consider the diagonal in X ⇥ X , � = {(x , x) | x 2 X}, and let ⇢ : X ⇥ X ! � be the map that
sends each point in X ⇥ X to its nearest point in � with respect to the metric dmax.

Lemma 5.1. The fibre ⇢�1(a, a) is the set of point (x , y) 2 X ⇥ X such that a is the midpoint of the
segment xy.

Definition 5.2. We extend the projection ⇢ to a map ⇢̃ : X ⇥X [G ! � as follows: if p = (x , y) 2 X ⇥X ,
then ⇢̃(p) = ⇢(p); if g 2 G , then ⇢̃(g) = (g(0), g(0)).
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Next, we prove that this extension is continuous. Before, we need a couple of auxiliary lemmas.

Lemma 5.3. In a proper CAT(�1) space, limi ,j(xi |yj)o = (⇠|⇠0)o for any sequences xi ! ⇠, yj ! ⇠0; see
Buyalo–Schroeder [5, Prop 3.4.2]. Moreover, (⇠|⇠0)o = +1 if and only if ⇠ = ⇠0; see Bridson–Haefliger [4,
Ch.III.H. Rmk. 3.17].

Lemma 5.4. Given a sequence of geodesic segments gn : [an, bn] ! X such that gn(an) ! ⇠, gn(bn) ! ⇠0,
and gn(0) ! m 2 X, there exists a convergent subsequence to a geodesic g satisfying g(+1) = ⇠,
g(�1) = ⇠0, and g(0) = m.

Proof. The fact that the sequence {gn}n converges to a geodesic g such that g(0) = m is a conse-
quence of Arzela–Ascoli theorem for proper metric spaces; see Papadopoulos [8, Thm. 1.4.9]. Now, for
any t 2 R, observe that (gn(an)|gn(bn))gn(t) = 0 since, for all n, gn(t) is a point of the segment gn,
and limn(gn(an)|gn(bn))gn(t) = (⇠|⇠0)g(t) by the continuity of the Gromov product. Therefore, for all t,
(⇠|⇠0)g(t) = 0 and g(t) belongs to the line joining ⇠ and ⇠0. Since this line is unique, g(+1) = ⇠ and
g(�1) = ⇠0.

Proposition 5.5. The map ⇢̃ : X ⇥ X [ G ! � is continuous.

Proof. The restrictions of ⇢̃ to X ⇥ X and to G are continuous. Let {(xn, yn)}n be a sequence in X ⇥ X
converging to a geodesic g in G so, xn ! g(+1), yn ! g(�1), and d(xn, o)� d(yn, o) ! C . First, we
will prove that the geodesic segments xnyn converge to a parameterization of the geodesic line L with ideal
endpoints ⇠ = g(+1) and ⇠0 = g(�1); then we will see that this parameterization is precisely g .

For each pair (xn, yn) let mn be the middle point of the segment xnyn. The points mn lie in a compact
set. Indeed, suppose d(o,mn) ! +1 so, mn ! ⌘ 2 @1X . Using the definition of Gromov product,

(xn|mn)o =
1

2

�
(xn|yn)o + d(mn, o) +

1

2
(d(xn, o)� d(yn, o))

�
.

Since ⇠ 6= ⇠0, by Lemma 5.3 limn(xn|yn)o is bounded. By hypothesis, d(xn, o) � d(yn, o) is also bounded
and d(mn, o) ! +1. Therefore, limn(xn|mn)o = +1 and, by Lemma 5.3 again, ⌘ = ⇠. Similarly, one
could find that ⌘ = ⇠0, so ⇠ = ⇠0 and arrive to a contradiction. Therefore, mn ! m for some m 2 X and,
by Lemma 5.4, m must be a point in L.

Now we have, on one hand,

dX (mn, yn)� dX (o, yn)� (dX (mn, xn)� dX (o, xn)) = dX (o, xn)� dX (o, yn) ! C .

On the other hand, since dX (·, yn) � dX (o, yn) ! �o

⇠0(·) and dX (·, xn) � dX (o, xn) ! �o

⇠ (·) uniformly on
compact sets, we have

dX (mn, yn)� dX (o, yn)� (dX (mn, xn)� dX (o, xn)) ! �o

⇠0(m)� �o

⇠ (m)

so, �o

⇠0(m)��o

⇠ (m) = C . But the only point in L satisfying this equation is precisely g(0). Hence m = g(0).

Therefore, ⇢̃(xn, yn) = (mn,mn) ! (m,m) = (g(0), g(0)) = ⇢̃(g) and the map ⇢̃ is everywhere
continuous.

Corollary 5.6. The fibre ⇢̃�1(x , x) restricted to G is the set Gx = {� 2 G | �(0) = x} ⇢ G.
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Example 5.7. In a Riemannian manifold X of dimension n and sectional curvature  �1, Gx is identified
with the unitary tangent at x , (TxX )1 ⇠= Sn�1.

Observe that, since X ⇥X [G and X ⇥X [⌦ are homeomorphic, we also have a continuous projection
from X ⇥ X [ ⌦ to �, which we also call ⇢̃.

Now, let K ⇢ X be a compact in X such that K/� ⇠= X/� and consider K� = {(x , x) 2 � | x 2 K}.

Lemma 5.8. The set ⇢̃�1(K�) is compact.

Proof. Consider a sequence {(xn, yn)}n in ⇢̃�1(K�). Then, since K� is compact, {⇢̃((xn, yn))}n has a
convergent subsequence {(mn,mn)}n in K�. Take a sequence of points {(xn, yn)}n that project to this
convergent subsequence. They have a subsequence {(x 0n, y 0n)}n converging in X ⇥ X

max
. If the limit point of

this subsequence is in X⇥X[⌦ we are done. If not, either the limit is in X⇥X[� or |{d(x 0n, o)�d(y 0n, o)}n|
is unbounded for all n. For the first case, observe that, for every n, (x 0n|y 0n)o  dX (mn, o) < C , but
{x 0n}n and {y 0n}n have the same limit if and only if (x 0n|y 0n)o ! 1 by Lemma 5.3, hence, this case is
not possible. The second case is not possible either since |{d(x 0n, o) � d(y 0n, o)}n| unbounded implies
{d(mn, o)}n unbounded.

Now, consider a sequence of the form {gn}n in ⇢̃�1(K�). The geodesics in the sequence satisfy
gn(0) 2 K for all n. Since the set of geodesics going through a compact set is compact, {gn} has a
convergent subsequence.

Theorem 5.9. The action of � on X ⇥ X [ ⌦ is properly discontinuous and cocompact.

Proof. In order to see that � acts properly discontinuously, take K ⇢ (X ⇥ X [ ⌦) any compact subset,
and let � 2 � be such that �K \K 6= ;. Then, ⇢̃(K )\ ⇢̃(�K ) = ⇢̃(K )\ �⇢̃(K ) 6= ;. Since ⇢̃ is continuous,
⇢̃(K ) is compact and, since the action of � on � is properly discontinuous, ⇢̃(K ) \ �⇢̃(K ) 6= ; only for a
finite number of elements � 2 �. Therefore �K \ K 6= ; only for a finite number of � 2 �.

For the cocompactness observe that, by Lemma 5.1 and Corollary 5.6, (X⇥X[⌦)/� ⇠= (X⇥X[G )/� =
⇢̃�1(K�)/� which is compact by Lemma 5.8.
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2014.

http://reportsascm.iec.cat38

http://reportsascm.iec.cat




Reports@SCM
Volume 3, number 1, 2017

Table of Contents

The wave equation for stiff strings and piano tuning
Xavier Gracia and Tomas Sanz-Perela 1

Explicit bounds for growth of sets in non-abelian groups
Alberto Espuny D́ıaz 17

Compactification of a diagonal action on the product
of CAT (-1) spaces
Teresa Garćıa 27


